Dr Ping Yip

Lecturer in Neuroscience

My current role involves basic research in traumatic brain injury and spinal cord injury. I spend my time between in vivo research and in the laboratory doing histology, molecular biology and cell culture. Apart from carrying out research within my own interest, I’m also involved in the supervision of the research carried out by undergraduate, postgraduate and PhD students.  Furthermore, I’m involved in teaching neuroscience to medical, BSc and MSc students from Queen Mary University of London.


Provide lecturers and tutorials in neuroscience to medical students and students studying Intercalated BSc Neuroscience and MSc in Neuroscience and Translational Medicine.

Research interests

I have several research interests which include neuroregeneration, neuroplasticity and neuroprotection and the role of microglia in neurotrauma. I am also involved in a collaborative clinical study in the identification of biomarkers in newborn with brain injury.


email: p.yip@qmul.ac.uk
Tel: +44 (0) 20 7882 2273

  • Yip PK, Bowes AL, Hall JCE et al. (2019). Docosahexaenoic acid reduces microglia phagocytic activity via miR-124 and induces neuroprotection in rodent models of spinal cord contusion injury. Hum Mol Genet 28, (14) 2427-2448.
  • Yip PK, Chapman GE, Sillito RR et al. (2019). Studies on long term behavioural changes in group-housed rat models of brain and spinal cord injury using an automated home cage recording system. J Neurosci Methods 32149-63.
  • Ponnusamy V, Yip PK (2019). The role of microRNAs in newborn brain development and hypoxic ischaemic encephalopathy. Neuropharmacology 14955-65.
  • Liu Z-H, Chen N-Y, Tu P-H et al. (2019). Previous Antithrombotic Therapy, Particularly Anticoagulant, Is Associated with Unfavorable Outcomes in Patients with Primary Spontaneous Intracerebral Hemorrhage Receiving Craniotomy: A Nationwide Population-Based Cohort Study. World Neurosurg .
  • Bell ZW, Lovell P, Mello CV et al. (2019). Urotensin-related gene transcripts mark developmental emergence of the male forebrain vocal control system in songbirds. Sci Rep 9, (1) 816-.
  • Zubiri I, Lombardi V, Bremang M et al. (2018). Tissue-enhanced plasma proteomic analysis for disease stratification in amyotrophic lateral sclerosis. Mol Neurodegener 13, (1) 60-.
  • BO X, GUSHCHINA S, PRYCE G et al. (). Increased expression of colony-stimulating factor-1 in mouse spinal cord with experimental autoimmune encephalomyelitis correlates with microglial activation and neuronal loss. Glia .
  • BO XUENONG, GUSHCHINA S, PRYCE G et al. (2018). Increased expression of colony‐stimulating factor‐1 in mouse spinal cord with experimental autoimmune encephalomyelitis correlates with microglial activation and neuronal loss. Glia 66, (10) 2108-2125.
  • Shah DK, Ponnusamy V, Evanson J et al. (2018). Raised Plasma Neurofilament Light Protein Levels Are Associated with Abnormal MRI Outcomes in Newborns Undergoing Therapeutic Hypothermia. Front Neurol 986-.
  • Venero JL, Yip PK, Carrillo-Jimenez A et al. (2017). Galectin-3 acts as an early alarmin orchestrating brain immune response and promoting neurodegeneration after traumatic brain injury. GLIA 65E504-E504.
  • Burguillos MA, Boza A, Yip PK et al. (2017). Immunomodulatory roles of galectin-3 under conditions of neurodegeneration. GLIA 65E15-E15.
  • Liu Z-H, Yip PK, Priestley JV et al. (2017). A Single Dose of Docosahexaenoic Acid Increases the Functional Recovery Promoted by Rehabilitation after Cervical Spinal Cord Injury in the Rat. J Neurotrauma 34, (9) 1766-1777.
  • Yip PK, Carrillo-Jimenez A, King P et al. (2017). Galectin-3 released in response to traumatic brain injury acts as an alarmin orchestrating brain immune response and promoting neurodegeneration. Scientific Reports 741689-41689.
  • Tremoleda JL, Thau-Zuchman O, Davies M et al. (). In vivo PET imaging of the neuroinflammatory response in rat spinal cord injury using the TSPO tracer [18F]GE-180 and effect of docosahexaenoic acid. European Journal of Nuclear Medicine and Molecular Imaging .
  • Ponnusamy V, Kapellou O, Yip E et al. (2016). A study of microRNAs from dried blood spots in newborns after perinatal asphyxia: a simple and feasible biosampling method. Pediatr Res 79, (5) 799-805.
  • Liu Z-H, Tu P-H, Chen N-Y et al. (2015). Raised Proinflammatory Cytokine Production Within Cerebrospinal Fluid Precedes Fever Onset in Patients With Neurosurgery-Associated Bacterial Meningitis. Crit Care Med 43, (11) 2416-2428.
  • Liu Z-H, Yip PK, Adams L et al. (2015). A Single Bolus of Docosahexaenoic Acid Promotes Neuroplastic Changes in the Innervation of Spinal Cord Interneurons and Motor Neurons and Improves Functional Recovery after Spinal Cord Injury. J Neurosci 35, (37) 12733-12752.
  • Bowes AL, Yip PK (2014). Modulating inflammatory cell responses to spinal cord injury: all in good time. J Neurotrauma 31, (21) 1753-1766.
  • Hockley JRF, Boundouki G, Cibert-Goton V et al. (2014). Multiple roles for NaV1.9 in the activation of visceral afferents by noxious inflammatory, mechanical, and human disease-derived stimuli. Pain 155, (10) 1962-1975.
  • Paterniti I, Impellizzeri D, Di Paola R et al. (2014). Docosahexaenoic acid attenuates the early inflammatory response following spinal cord injury in mice: in-vivo and in-vitro studies. J Neuroinflammation 116-.
  • Tsantoulas C, Zhu L, Yip P et al. (2014). Kv2 dysfunction after peripheral axotomy enhances sensory neuron responsiveness to sustained input. Exp Neurol 251115-126.
  • Hockley JRF, Boundouki G, Cibert-Goton V et al. (2014). Multiple roles for NaV1.9 in the activation of visceral afferents by noxious inflammatory, mechanical, and human disease-derived stimuli. Pain 155, (10) 1962-1975.
  • Peluffo H, Foster E, Ahmed SG et al. (2013). Efficient gene expression from integration-deficient lentiviral vectors in the spinal cord. Gene Therapy 20, (6) 645-657.
  • Yip PK, Pizzasegola C, Gladman S et al. (2013). The omega-3 fatty acid eicosapentaenoic acid accelerates disease progression in a model of amyotrophic lateral sclerosis. PLoS One 8, (4) e61626-.
  • Soleman S, Yip PK, Duricki DA et al. (2012). Delayed treatment with chondroitinase ABC promotes sensorimotor recovery and plasticity after stroke in aged rats. BRAIN 1351210-1223.
  • Yip PK, Malaspina A (2012). Spinal cord trauma and the molecular point of no return. Mol Neurodegener 76-.
  • Marchand F, D'Mello R, Yip PK et al. (2011). Specific involvement of atypical PKCζ/PKMζ in spinal persistent nociceptive processing following peripheral inflammation in rat. Mol Pain 786-.
  • Jokic N, Yip PK, Michael-Titus A et al. (2010). The human G93A-SOD1 mutation in a pre-symptomatic rat model of amyotrophic lateral sclerosis increases the vulnerability to a mild spinal cord compression. BMC Genomics 11633-.
  • Kaan TKY, Yip PK, Patel S et al. (2010). Systemic blockade of P2X3 and P2X2/3 receptors attenuates bone cancer pain behaviour in rats. Brain 133, (9) 2549-2564.
  • Malaspina A, Ngoh SFA, Ward RE et al. (2010). Activation transcription factor-3 activation and the development of spinal cord degeneration in a rat model of amyotrophic lateral sclerosis. Neuroscience 169, (2) 812-827.
  • Yip PK, Wong L-F, Sears TA et al. (2010). Cortical overexpression of neuronal calcium sensor-1 induces functional plasticity in spinal cord following unilateral pyramidal tract injury in rat. PLoS Biol 8, (6) e1000399-.
  • Kaan TKY, Yip PK, Grist J et al. (2010). Endogenous purinergic control of bladder activity via presynaptic P2X3 and P2X2/3 receptors in the spinal cord. J Neurosci 30, (12) 4503-4507.
  • Soleman S, Yip P, Leasure JL et al. (2010). Sustained sensorimotor impairments after endothelin-1 induced focal cerebral ischemia (stroke) in aged rats. Exp Neurol 222, (1) 13-24.
  • Goncalves MB, Williams E-J, Yip P et al. (2010). The COX-2 inhibitors, meloxicam and nimesulide, suppress neurogenesis in the adult mouse brain. Br J Pharmacol 159, (5) 1118-1125.
  • Agudo M, Yip P, Davies M et al. (2010). A retinoic acid receptor beta agonist (CD2019) overcomes inhibition of axonal outgrowth via phosphoinositide 3-kinase signalling in the injured adult spinal cord. Neurobiol Dis 37, (1) 147-155.
  • Yip PK, Kaan TKY, Fenesan D et al. (2009). Rapid isolation and culture of primary microglia from adult mouse spinal cord. J Neurosci Methods 183, (2) 223-237.
  • Clark AK, Yip PK, Malcangio M (2009). The liberation of fractalkine in the dorsal horn requires microglial cathepsin S. J Neurosci 29, (21) 6945-6954.
  • Thacker MA, Clark AK, Bishop T et al. (2009). CCL2 is a key mediator of microglia activation in neuropathic pain states. European Journal of Pain 13, (3) 263-272.
  • Starkey ML, Davies M, Yip PK et al. (2009). Expression of the regeneration-associated protein SPRR1A in primary sensory neurons and spinal cord of the adult mouse following peripheral and central injury. J Comp Neurol 513, (1) 51-68.
  • Goncalves MB, Suetterlin P, Yip P et al. (2008). A diacylglycerol lipase-CB2 cannabinoid pathway regulates adult subventricular zone neurogenesis in an age-dependent manner. Mol Cell Neurosci 38, (4) 526-536.
  • Bishop T, Hewson DW, Yip PK et al. (2007). Characterisation of ultraviolet-B-induced inflammation as a model of hyperalgesia in the rat. Pain 131, (1-2) 70-82.
  • Clark AK, Yip PK, Grist J et al. (2007). Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci U S A 104, (25) 10655-10660.
  • Yip PK, Wong L-F, Pattinson D et al. (2006). Lentiviral vector expressing retinoic acid receptor beta2 promotes recovery of function after corticospinal tract injury in the adult rat spinal cord. Hum Mol Genet 15, (21) 3107-3118.
  • Barritt AW, Davies M, Marchand F et al. (2006). Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J Neurosci 26, (42) 10856-10867.
  • So P-L, Yip PK, Bunting S et al. (2006). Interactions between retinoic acid, nerve growth factor and sonic hedgehog signalling pathways in neurite outgrowth. Dev Biol 298, (1) 167-175.
  • Wong L-F, Yip PK, Battaglia A et al. (2006). Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord. Nat Neurosci 9, (2) 243-250.
  • Starkey ML, Barritt AW, Yip PK et al. (2005). Assessing behavioural function following a pyramidotomy lesion of the corticospinal tract in adult mice. Exp Neurol 195, (2) 524-539.
  • Cockayne DA, Dunn PM, Zhong Y et al. (2005). P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J Physiol 567, (Pt 2) 621-639.
  • Lever I, Cunningham J, Grist J et al. (2003). Release of BDNF and GABA in the dorsal horn of neuropathic rats. Eur J Neurosci 18, (5) 1169-1174.
  • Chapman AG, Talebi A, Yip PK et al. (2001). Anticonvulsant activity of a mGlu(4alpha) receptor selective agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid. Eur J Pharmacol 424, (2) 107-113.
  • Yip PK, Meldrum BS, Rattray M (2001). Elevated levels of group-III metabotropic glutamate receptors in the inferior colliculus of genetically epilepsy-prone rats following intracollicular administration of L-serine-O-phosphate. J Neurochem 78, (1) 13-23.
  • Chapman AG, Nanan K, Yip P et al. (1999). Anticonvulsant activity of a metabotropic glutamate receptor 8 preferential agonist, (R,S)-4-phosphonophenylglycine. Eur J Pharmacol 383, (1) 23-27.
  • Chapman AG, Yip PK, Yap JS et al. (1999). Anticonvulsant actions of LY 367385 ((+)-2-methyl-4-carboxyphenylglycine) and AIDA ((RS)-1-aminoindan-1,5-dicarboxylic acid). Eur J Pharmacol 368, (1) 17-24.
  • Tang E, Yip PK, Chapman AG et al. (1997). Prolonged anticonvulsant action of glutamate metabotropic receptor agonists in inferior colliculus of genetically epilepsy-prone rats. European Journal of Pharmacology 327, (2-3) 109-115.
  • Smith SE, Man CM, Yip PK et al. (1996). Anticonvulsant effects of 7-nitroindazole in rodents with reflex epilepsy may result from L-arginine accumulation or a reduction in nitric oxide or L-citrulline formation. British Journal of Pharmacology 119, (1) 165-173.

Share this page